ASEE 2016 Northeast Section Conference, April 28-30, 2016, University of Rhode Island, Kingston, RI, USA. 1

Image processing tasks applied to robot vision
system and path discovery (March 2016)

Rafael Custodio Cejas, Italo Guedes A. Silva, Advisor: Prof. Sarosh Patel
Computer Science and Engineering Department
University of Bridgeport
Bridgeport, Connecticut 06604, USA
{iguedesa, rcustodio}@my.bridgeport.edu, saroshp@bridgeport.edu

Abstract—-This work presents the project of a mobile robot with
an attached handler, programmed to collect small objects in the
near area. The robot takes photos —is able to process a constant
stream of images— of the surround area searching for objects, and
goes to the nearest one to collect. After collecting, the robot has to
put the object in a specified place. The robot will keep searching
for objects and moving while on. The image processing job is to do
a contrast between the floor color and the colors of the objects, and
then the algorithm provides the location to move on. The project
is built with a Raspberry Pi/Raspbian platform running a python
program that uses the OpenCV library to process images and
parameters used to guide the robot, a simple webcam that provides
high resolution images, and the motors as final actuators to control
the movement of the robot and the handler.

Index Terms— Computer Vision, Gripper, Image Processing,
Machine Vision, Mobile Robot, OpenCV, Path Discovery, Python,
Raspberry Pi, Robotics.

I. INTRODUCTION

A robot capable of searching for objects, collecting them,

and taking them to another place. A small robot that can see
what is around it, detect if is a small object, and decide what to
do. Our paper describes how works, and which tools were used
to build our object-collector robot, explaining some image
processing techniques that we applied to our project. The
component parts of the robot, how they are connected to each
other, and why they were chosen. We will describe how the
robot will find the path to deposit an object found, and the
solution we found to make it an easy job. Also, some
improvements can be taken to optimize the search for objects in
the future.

This paper was first submitted for review in 03/01/2016. This work was
supported in part by the Brazilian Scientific Mobility Program, a partnership
between Institute of International Education (IIE) and Capes to grant undergrad
students with scholarships.

Rafael C. Cejas, was with Federal University of Para, Belem, PA, Brazil. He
is now with the Computer Science and Engineering Department, University of

II. IMAGE PROCESSING TASKS

One of the most used approaches used in designing machine
vision systems is based on recording the external environment
—workspace— with a digital camera to obtain images
corresponding to the real state of the surrounding area as a
primary source of information. These images can be easily
processed —despite the hardware restrictions— using image
analysis software to match a requirement formulated with the
purpose of achieving a previously designed goal. With the
constant improvement of computer hardware, digital cameras,
software tools and easy-to-learn libraries, more and more
applications that deals with pattern recognition in images like
the one described can be easily deployed. One example of a
modern library that provides a basic infrastructure for image-
analysis and largely used in this project is OpenCV. OpenCV is
basically a library of C functions that were written to handle
infrastructure operations and image processing tasks. Some of
the features provided include I/O functions, its own in-memory
data organization for an image with structural information
about the image data, methods to get and set individual pixels
in the image, basic pre-programmed transformations, and a
display where it’s possible to visualize the output of the current
task. For the purpose of meeting the requirements of this
project, the version of OpenCV chosen was OpenCV-Python.
This version is basically a wrapper that allow us to use the C
functions for image processing and other tasks from a python
script.

The application used in this project uses the camera features
of the OpenCV library to obtain a constant stream of images
from the onboard webcam. Every single frame is processed
with the purpose of locate objects around the robot and to
distinguish between them and the floor. Some transformations
are applied to the obtained frame to eliminate any noise that can
make harder to distinguish the objects, and other used
transformations include an implementation of an edge detection

Bridgeport, Bridgeport, CT 06604 USA
rcustodio@my.bridgeport.edu).

Italo Guedes A. Silva, was with Federal University of Campina Grande,
Campina Grande, PB, Brazil. He is now with the Computer Science and
Engineering Department, University of Bridgeport, Bridgeport, CT 06604 USA

(e-mail: iguedesa@my.bridgeport.edu).

(e-mail:

ASEE 2016 Northeast Section Conference, April 28-30, 2016, University of Rhode Island, Kingston, RI, USA. 2

technique and color segmentation, both topics better explained
below.

The following functions will take care of making the real
world machine-visible, that is, process the captured images in a
way that the machine can "understand" what is around it, and
then make decisions based on that. Our robot need to see what
is around it, and decide either to move ahead, to collect an
object, or to turn around. Our robot will convert the color scale,
apply filters, change the morphology, and detect edges in the
images to keep only the needed information, and define his next
path. It may seem difficult, but is as simple as follow the steps.

A. cvtColor

This function is used to convert the original image to other
scale of colors. In this case, we will use this function to convert
a colorful image to grayscale. This is an important task to do
before applying the filters. The function has as parameters the
source image, and a code of an enumerator to choose the desired
scale, which, in this project, we will use
cv2.cv.CV_RGB2GRAY for the objects detection, and
cv2.cv.CV_BGR2HSV for distinguish the floor and the walls.

cv2.cevtColor(sre, code) — dst

===

Fig. 1 — Original frame converted to grayscale, and to HSV color system.

B. Gaussian Filter

The first step in processing the image to detect objects is to
smooth or blur the image. This effect has the main objective of
decrease the small details and the high-frequency noise in an
image, often caused by digital cameras. The function that has
this responsibility in OpenCV is the GaussianBlur. This
function applies a Gaussian filter to the image, by doing a
convolution with each point (x, y) of the image with a Gaussian
kernel, that works like the coefficients of the filter. The result
of each operation will be added all together to form the output
point. This operation will take point by point of the image and
after all points were convolved, we’ll have the output image
with the same size and same number of channels as the input
image.

A kernel is an array of coefficients that are convolved with
the pixels of an image. The Gaussian kernel is a low-pass
kernel, because it passes through the lower frequencies and
decrease the higher frequencies. An example of a Gaussian
kernel is shown in the figure 2, which shows a higher weight in
the central pixels compared to the others.

0.4

0.3F

-4 -2 4] 2 4

Fig. 2 — Example of a Gaussian Filter.

The function of OpenCV used was the GaussianBlur, which
takes the parameters src, ksize, and sigmaX. The src parameter
is the input image, that was captured by the camera. The ksize
parameter are a composite of ksize.width and ksize.height,
which determines the size of the Gaussian kernel to be used in
the filtering, both width and height must be odd and positive.

cv2.GaussianBlur(src, ksize, sigmaX) — dst

—
L Input

Fig. 3 — Input frame processed using GaussianBlur function.

C. Canny edge detector

The second step to process our image is to using an edge
detector. This function identifies the edges of an image by
detecting regions with rapid color intensity variation. Inside this
function, the Gaussian filter is applied again to make sure all
unintended details are without focus, then begins a procedure to
find the intensity gradient (strength and direction) of the image.
At this time probably all edges were identified, but if there is
any pixel left that are not part of an edge still on the image, they
will be eliminated by a non-maximum suppression. The last step
is the hysteresis, that select which pixels should remain in the
image and which should be deleted based on value of the pixel
gradient (P), using the lower threshold (Ti,we) and the upper
threshold (Typper)-

If P> (Typper) => Pixel accepted

If P < (Tiower) => Pixel rejected

If (Tiower) > P > (Typper) => Pixel accepted only if it has a neighbor pixel above upper
threshold

The function of OpenCV used was the Canny, which takes
the parameters image, lower threshold, and upper_threshold.
The image parameter is the input image of the function. The
lower threshold and upper threshold parameters define the
threshold values explained in the last step.

cv2.Canny(image, lower_threshold, upper_threshold) —
edges

ASEE 2016 Northeast Section Conference, April 28-30, 2016, University of Rhode Island, Kingston, RI, USA. 3

-

Fig. 4 — Canny edge detection.

D. Dilation and Erosion

The dilation and erosion operations are very similar, the
difference between them is that while the dilation computes the
maximum pixel value during a convolution, the erosion
computes the minimum pixel value. The image is convolved
with a kernel, which can be of any size or shape, usually a circle
or a square. The kernel has a specific anchor point, usually at
its center. As the kernel is being convolved through the image,
we replace each pixel as the anchor point position with the pixel
value overlapped by the kernel in that window. In a dilated
operation, the bright regions of the image will be dilated, and
dark reduced. And in a eroded operation, the dark will be
increased, and the bright eroded.

E. MorphologyEx

The next function of OpenCV used in our project is
morphologyEx. This function performs morphological
transformations in the image and, in this case, applies two
effects sequentially. First, the image goes through an erosion
effect, removing small objects and possible artifacts. Second,
the dilation effect, which dilates the remaining pixels to
enhance the size of the real objects in the image. This
combination of erode and dilate functions is called opening.

" =
Fig. 5- Morphological transformation applied to input image

F. inRange

This function is used to detect if the robot is in front of a wall.
We basically define values of white and gray to the floor, and
detect the percentage of non-white elements in the image. If this
value is almost 80%, then this means that the robot might be in
front of an obstacle and must turn around.

[-][=][x]

InRange

Fig. 6- Obstacle avoidance using inRange function

III. ENVIRONMENT PERCEPTION AND PATH
DISCOVERY

The next step after a processed frame is obtained according
to the image-analysis techniques described, is to feed the next
pipeline stage with parameters that will help our application to
take measures and decisions —like obstacle avoidance— about its
current set up and to set the appropriate digital signals used to
control the actuators —the wheels of the robot. As our project
deals with object detection, an OpenCV function called
findContours is used to obtain details of the objects in the frame.
The cv2.findContours uses a binary image as input —frame
obtained after the inRange operation takes place— and returns a
set of contours found in the frame. Every contour found is
stored as a vector of points and represents only the extreme
outer contours of the object, this feature is specified with the
parameter cv2.RETR _EXTERNAL —other modes are allowed,
but this one fits the requirements of our application very well.
Other important parameter is the method that tell us about the
internal representation of the contours points in the vectors. We
use the cv2.CV_CHAIN APPROX SIMPLE option, that
compresses segments and leaves only their end points. These
points are used later as arguments to a helper function that
draws rectangles which will be used later to see the contours
found in the output display as a way to obtain feedback of the
objects detected.

cv2.findContours(image, c¢v2.RETR EXTERNAL,
cv2.CV_CHAIN_APPROX SIMPLE)

One more important function is called cv2.contourArea(c).
This one is used to calculate the area of the contours specified
by a vector of 2d points —like the one that draws rectangles. The
value returned is used in the process of decision-making, it can
tell us if the area of the objects detected are in the range
specified for the targets or if it’s an obstacle to avoid —like a
wall. Our implementation of obstacle avoidance using this
approach consists of verifying if the contour’s area is greater
than a certain value. Any detection that exceeds the proposed
value is a large area in the frame that is considered an obstacle.
Using the same principles, areas too small are not considered
objects the robot may interact with. One of the decisions to
make is decide which path must be followed to achieve the goal
of collecting the target objects. In our project we have
considered the best approach to collect the nearest objects in the
workspace. This approach is implemented maintaining a pair of
variables that keep the values of the coordinates of the nearest
object found until then. The area of the contours found through

ASEE 2016 Northeast Section Conference, April 28-30, 2016, University of Rhode Island, Kingston, RI, USA. 4

the call to cv2.contourArea(c) are iterated in a way that the
nearest object to the robot can be determined.

Once the nearest object has been determined, some
calculations are realized in order to centralize the object in the
middle of the current frame in a way that it can be collected by
the attached gripper. The object’s centralization is obtained by
dividing the frame in sections, sections with 1/7 of the width of
the screen from a line that divides the frame in two halves
according to the picture bellow. Some movements —move to left
or move to right— are executed by the robot in order to change
the camera’s position to a frame that contains the object located
in the middle of the screen (Figure 7). Once the gripper grabs
the target object, the procedure to find the spot of deposit takes
place.

The approach used to implement the path discovery of the
end point is basically to find the place to discard the objects
taking into account a line whose function is to set the workspace
of the robot. One line that has been previously drawn to the
floor in a specific color is used to determine the robot’s
workspace and everything outside the delimited area is
considered out of range by default. This line can be identified
by applying a different image-analysis procedure than the used
to identify the objects. This technique basically applies color
segmentation to the frame to be processed in order to obtain an
output frame which can be used to determine if the line is near
the path followed by the robot. Once the line is reached, it will
be followed until the end point —collector— is reached too. After
dropping the object collected, the robot turns around and returns
to the space delimited by the line and executes the object
detection procedure once again.

Fig. 7 — Object’s centralization in the frame

IV. PLATFORM OVERVIEW

The following list shows the components of the robot, and
below a brief explanation about why we choose each one.

* Raspberry Pi™ 2 Model B

* Logitech HD C270 Webcam

* Edimax N150 Wifi USB Adapter

* MicroSD Card 16 GB

¢ L298N Dual H Bridge

* 2 Wheel Drive Robot Chassis

e Power Bank, JETech® 10,000mAh
¢ Standard Gripper Kit A

* Servo High Torque Standard Size

We choose the Raspberry Pi as the main board for our project
because it has enough processing power to deal with image
processing softwares, and deliver in real time the results. It also
has the advantage of the GPIO pins, which can control the
motors based on the result of the processing. Its compatibility
with USB peripherals made possible the use of a common web
camera to capture the images, and a simple Wi-Fi adapter to
connect to a wireless network. Finally, it is a low power
computer that can work for hours with a common battery.

The Logitech Webcam, the Edimax Wifi adapter, and the
MicroSD card were picked because of its cost-benefit,
compatibility with Raspberry Pi, and ease installation and use.
We needed to make a mobile robot, so we searched about small
motors and chassis, and we found that a 2 Wheel Drive Robot
Chassis, controlled with a L298N are totally compatible with
Raspberry Pi, and has the ideal size to fit all elements on it. For
the gripper, we found the Standard Gripper Kit A along with a
compatible servo that has a compatible size with the chassis,
and is also a good catcher to small objects. Finally, we choose
a JETech power bank with 10000mAbh, that is more than enough
to power on the board with its peripherals for hours.

The camera and the Wi-Fi adapter are directly connected on
the USB ports of the Raspberry Pi, which is powered by the
power bank through its microUSB port. The motors of the
chassis are connected to the H bridge, that is responsible for
changing the orientation of movement of the motors. 4 AA
batteries are connected to the H bridge to power the motors.

V. RESULTS

To test our system, we have set a workspace such a way that
the robot could realize its work properly. The environment
consists of a square area surrounded by a line that identifies the
boundaries of the workspace as can be seen in Fig. 8. The
objects in cylindrical form were chosen such a way that the
robot’s gripper can grab them easily from every position
possible. Some parameters were corrected later to ensure that a
180-degree turn could be realized without causing damage to
the platform.

Fig. 8 — Robot moving to first target detected. ‘

The deposit of the object was as expected. Fig. 9 shows a
snapshot of the moment the object is dropped.

ASEE 2016 Northeast Section Conference, April 28-30, 2016, University of Rhode Island, Kingston, RI, USA. 5

Fig. ;— Robot leaving object in marked area.

The moment following the deposit of the object was
registered as well. Fig. 10 shows a snapshot of the moment the
robot returns to the workspace.

Fig. 10 — Robot retufning to workspace.

To verify if the image processing program was pushing the
hardware to its limits we’ve ran a simple test. The results can
be seen in Fig. 11; it shows us that the application wasn’t using
even Y4 of CPU’s usage. And the usage decreases even more
when we consider not using a graphical interface. This
demonstrates the reason why, although of the intense repetitive
tasks of processing a streaming image, Raspberry Pi was able
to assure the flow of the process. That is why Raspberry Pi is
the best choice for the project.

TaskIManager]

File View Help

i' CPU usage: 23 %

\ lﬂ]\ory: 135 MB of 925 MB used |

Command User CPU% Vv | RSS
python root 18% 51.9MB
idle root 1% 342MB
pigpicd root 1% 15MB|[g
(I m | Dl
\ more details | ‘ Quit ‘

Fig. 11 — Hardware usage by application.

VI. CONCLUSION

In the work presented we gave brief explanations about some
of the powerful functions of OpenCV for image processing, and
how they can be combined to basic techniques to extract the
information we want from the workspace. By doing this project
we could begin our journey into the image processing world,
becoming more interested in the relationship that it has with
robotics, electronics and programming. We faced difficulties,
but we were able to overcome them by searching the web,
studying the functions, and trying by our own.

ACKNOWLEDGMENT

The Authors thank the help of Prof. Sarosh Patel and Peter
Zeno as advisors for this project.

REFERENCES

[1]1 J.R. Parker, Algorithms for Image Processing and Computer Vision, 2th
ed. Indianapolis, IN. Wiley Publishing Inc., 2010, pp. /-177.

[2] Enric Galceran , Marc Carreras. (2013, Feb.). A survey on coverage path
planning for robotics. Robotics and Autonomous Systems 61 (2013)
1258-1276]. Available: http://www.journals.elsevier.com/robotics-and-
autonomous-systems

[3] CDR H.R. Everett. (1989, May.). A survey on collision avoidance and
range sensors for robotics. Robotics and Autonomous Systems Vol. 5

Issue 1. [Online]. pp- 5-67.
Available:http://www.sciencedirect.com/science/article/pii/0921889089
900419

[4] OpenCV Documentation [Online]. Available site:

http://docs.opencv.org/2.4/doc/tutorials/imgproc/table_of content_imgpr
oc/table_of content_imgproc.html

