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Abstract–-This work presents the project of a mobile robot with 
an attached handler, programmed to collect small objects in the 
near area. The robot takes photos –is able to process a constant 
stream of images– of the surround area searching for objects, and 
goes to the nearest one to collect. After collecting, the robot has to 
put the object in a specified place. The robot will keep searching 
for objects and moving while on. The image processing job is to do 
a contrast between the floor color and the colors of the objects, and 
then the algorithm provides the location to move on. The project 
is built with a Raspberry Pi/Raspbian platform running a python 
program that uses the OpenCV library to process images and 
parameters used to guide the robot, a simple webcam that provides 
high resolution images, and the motors as final actuators to control 
the movement of the robot and the handler.  
 
 

Index Terms— Computer Vision, Gripper, Image Processing, 
Machine Vision, Mobile Robot, OpenCV, Path Discovery, Python, 
Raspberry Pi, Robotics. 

I. INTRODUCTION  

 A robot capable of searching for objects, collecting them, 
and taking them to another place. A small robot that can see 
what is around it, detect if is a small object, and decide what to 
do. Our paper describes how works, and which tools were used 
to build our object-collector robot, explaining some image 
processing techniques that we applied to our project. The 
component parts of the robot, how they are connected to each 
other, and why they were chosen. We will describe how the 
robot will find the path to deposit an object found, and the 
solution we found to make it an easy job. Also, some 
improvements can be taken to optimize the search for objects in 
the future. 
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II. IMAGE PROCESSING TASKS 
One of the most used approaches used in designing machine 

vision systems is based on recording the external environment 
–workspace– with a digital camera to obtain images 
corresponding to the real state of the surrounding area as a 
primary source of information. These images can be easily 
processed –despite the hardware restrictions– using image 
analysis software to match a requirement formulated with the 
purpose of achieving a previously designed goal. With the 
constant improvement of computer hardware, digital cameras, 
software tools and easy-to-learn libraries, more and more 
applications that deals with pattern recognition in images like 
the one described can be easily deployed. One example of a 
modern library that provides a basic infrastructure for image-
analysis and largely used in this project is OpenCV. OpenCV is 
basically a library of C functions that were written to handle 
infrastructure operations and image processing tasks. Some of 
the features provided include I/O functions, its own in-memory 
data organization for an image with structural information 
about the image data, methods to get and set individual pixels 
in the image, basic pre-programmed transformations, and a 
display where it’s possible to visualize the output of the current 
task. For the purpose of meeting the requirements of this 
project, the version of OpenCV chosen was OpenCV-Python. 
This version is basically a wrapper that allow us to use the C 
functions for image processing and other tasks from a python 
script.   
 The application used in this project uses the camera features 
of the OpenCV library to obtain a constant stream of images 
from the onboard webcam. Every single frame is processed 
with the purpose of locate objects around the robot and to 
distinguish between them and the floor. Some transformations 
are applied to the obtained frame to eliminate any noise that can 
make harder to distinguish the objects, and other used 
transformations include an implementation of an edge detection 
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technique and color segmentation, both topics better explained 
below.     
 The following functions will take care of making the real 
world machine-visible, that is, process the captured images in a 
way that the machine can "understand" what is around it, and 
then make decisions based on that. Our robot need to see what 
is around it, and decide either to move ahead, to collect an 
object, or to turn around. Our robot will convert the color scale, 
apply filters, change the morphology, and detect edges in the 
images to keep only the needed information, and define his next 
path. It may seem difficult, but is as simple as follow the steps. 
 
A. cvtColor 

This function is used to convert the original image to other 
scale of colors. In this case, we will use this function to convert 
a colorful image to grayscale. This is an important task to do 
before applying the filters. The function has as parameters the 
source image, and a code of an enumerator to choose the desired 
scale, which, in this project, we will use 
cv2.cv.CV_RGB2GRAY for the objects detection, and 
cv2.cv.CV_BGR2HSV for distinguish the floor and the walls. 

 
cv2.cvtColor(src, code) → dst 

 

 
Fig. 1 – Original frame converted to grayscale, and to HSV color system. 

 
B. Gaussian Filter 

The first step in processing the image to detect objects is to 
smooth or blur the image. This effect has the main objective of 
decrease the small details and the high-frequency noise in an 
image, often caused by digital cameras. The function that has 
this responsibility in OpenCV is the GaussianBlur. This 
function applies a Gaussian filter to the image, by doing a 
convolution with each point (x, y) of the image with a Gaussian 
kernel, that works like the coefficients of the filter. The result 
of each operation will be added all together to form the output 
point. This operation will take point by point of the image and 
after all points were convolved, we’ll have the output image 
with the same size and same number of channels as the input 
image. 

A kernel is an array of coefficients that are convolved with 
the pixels of an image. The Gaussian kernel is a low-pass 
kernel, because it passes through the lower frequencies and 
decrease the higher frequencies. An example of a Gaussian 
kernel is shown in the figure 2, which shows a higher weight in 
the central pixels compared to the others. 

 

 
Fig. 2 – Example of a Gaussian Filter. 

The function of OpenCV used was the GaussianBlur, which 
takes the parameters src, ksize, and sigmaX. The src parameter 
is the input image, that was captured by the camera. The ksize 
parameter are a composite of ksize.width and ksize.height, 
which determines the size of the Gaussian kernel to be used in 
the filtering, both width and height must be odd and positive. 

 
cv2.GaussianBlur(src, ksize, sigmaX) → dst 

 

 
Fig. 3 – Input frame processed using GaussianBlur function.  

 
C. Canny edge detector 

The second step to process our image is to using an edge 
detector. This function identifies the edges of an image by 
detecting regions with rapid color intensity variation. Inside this 
function, the Gaussian filter is applied again to make sure all 
unintended details are without focus, then begins a procedure to 
find the intensity gradient (strength and direction) of the image. 
At this time probably all edges were identified, but if there is 
any pixel left that are not part of an edge still on the image, they 
will be eliminated by a non-maximum suppression. The last step 
is the hysteresis, that select which pixels should remain in the 
image and which should be deleted based on value of the pixel 
gradient (P), using the lower threshold (Tlower) and the upper 
threshold (Tupper). 

 
If P > (Tupper) => Pixel accepted 
If P < (Tlower) => Pixel rejected 
If (Tlower) > P > (Tupper) => Pixel accepted only if it has a neighbor pixel above upper 
threshold 

 
The function of OpenCV used was the Canny, which takes 

the parameters image, lower_threshold, and upper_threshold. 
The image parameter is the input image of the function. The 
lower_threshold and upper_threshold parameters define the 
threshold values explained in the last step. 

 
cv2.Canny(image, lower_threshold, upper_threshold) → 

edges 
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Fig. 4 – Canny edge detection. 

 
 
D. Dilation and Erosion 

The dilation and erosion operations are very similar, the 
difference between them is that while the dilation computes the 
maximum pixel value during a convolution, the erosion 
computes the minimum pixel value. The image is convolved 
with a kernel, which can be of any size or shape, usually a circle 
or a square. The kernel has a specific anchor point, usually at 
its center. As the kernel is being convolved through the image, 
we replace each pixel as the anchor point position with the pixel 
value overlapped by the kernel in that window. In a dilated 
operation, the bright regions of the image will be dilated, and 
dark reduced. And in a eroded operation, the dark will be 
increased, and the bright eroded. 
 
E. MorphologyEx 

The next function of OpenCV used in our project is 
morphologyEx. This function performs morphological 
transformations in the image and, in this case, applies two 
effects sequentially. First, the image goes through an erosion 
effect, removing small objects and possible artifacts. Second, 
the dilation effect, which dilates the remaining pixels to 
enhance the size of the real objects in the image. This 
combination of erode and dilate functions is called opening. 

 

 
Fig. 5- Morphological transformation applied to input image 

 
F. inRange 
 This function is used to detect if the robot is in front of a wall. 
We basically define values of white and gray to the floor, and 
detect the percentage of non-white elements in the image. If this 
value is almost 80%, then this means that the robot might be in 
front of an obstacle and must turn around. 
 

 
Fig. 6- Obstacle avoidance using inRange function 

III. ENVIRONMENT PERCEPTION AND PATH 
DISCOVERY 

The next step after a processed frame is obtained according 
to the image-analysis techniques described, is to feed the next 
pipeline stage with parameters that will help our application to 
take measures and decisions –like obstacle avoidance– about its 
current set up and to set the appropriate digital signals used to 
control the actuators –the wheels of the robot. As our project 
deals with object detection, an OpenCV function called 
findContours is used to obtain details of the objects in the frame. 
The cv2.findContours uses a binary image as input –frame 
obtained after the inRange operation takes place– and returns a 
set of contours found in the frame. Every contour found is 
stored as a vector of points and represents only the extreme 
outer contours of the object, this feature is specified with the 
parameter cv2.RETR_EXTERNAL –other modes are allowed, 
but this one fits the requirements of our application very well. 
Other important parameter is the method that tell us about the 
internal representation of the contours points in the vectors. We 
use the cv2.CV_CHAIN_APPROX_SIMPLE option, that 
compresses segments and leaves only their end points. These 
points are used later as arguments to a helper function that 
draws rectangles which will be used later to see the contours 
found in the output display as a way to obtain feedback of the 
objects detected.  
 

cv2.findContours(image, cv2.RETR_EXTERNAL, 
cv2.CV_CHAIN_APPROX_SIMPLE) 
  

One more important function is called cv2.contourArea(c). 
This one is used to calculate the area of the contours specified 
by a vector of 2d points –like the one that draws rectangles. The 
value returned is used in the process of decision-making, it can 
tell us if the area of the objects detected are in the range 
specified for the targets or if it’s an obstacle to avoid –like a 
wall. Our implementation of obstacle avoidance using this 
approach consists of verifying if the contour’s area is greater 
than a certain value. Any detection that exceeds the proposed 
value is a large area in the frame that is considered an obstacle. 
Using the same principles, areas too small are not considered 
objects the robot may interact with. One of the decisions to 
make is decide which path must be followed to achieve the goal 
of collecting the target objects. In our project we have 
considered the best approach to collect the nearest objects in the 
workspace. This approach is implemented maintaining a pair of 
variables that keep the values of the coordinates of the nearest 
object found until then. The area of the contours found through 
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the call to  cv2.contourArea(c) are iterated in a way that the 
nearest object to the robot can be determined.  

Once the nearest object has been determined, some 
calculations are realized in order to centralize the object in the 
middle of the current frame in a way that it can be collected by 
the attached gripper. The object’s centralization is obtained by 
dividing the frame in sections, sections with 1/7 of the width of 
the screen from a line that divides the frame in two halves 
according to the picture bellow. Some movements –move to left 
or move to right– are executed by the robot in order to change 
the camera’s position to a frame that contains the object located 
in the middle of the screen (Figure 7). Once the gripper grabs 
the target object, the procedure to find the spot of deposit takes 
place. 

The approach used to implement the path discovery of the 
end point is basically to find the place to discard the objects 
taking into account a line whose function is to set the workspace 
of the robot. One line that has been previously drawn to the 
floor in a specific color is used to determine the robot’s 
workspace and everything outside the delimited area is 
considered out of range by default. This line can be identified 
by applying a different image-analysis procedure than the used 
to identify the objects. This technique basically applies color 
segmentation to the frame to be processed in order to obtain an 
output frame which can be used to determine if the line is near 
the path followed by the robot. Once the line is reached, it will 
be followed until the end point –collector– is reached too. After 
dropping the object collected, the robot turns around and returns 
to the space delimited by the line and executes the object 
detection procedure once again. 

 

 
Fig. 7 – Object’s centralization in the frame 

IV. PLATFORM OVERVIEW 
The following list shows the components of the robot, and 

below a brief explanation about why we choose each one. 
 

• Raspberry Pi™ 2 Model B 
• Logitech HD C270 Webcam 
• Edimax N150 Wifi USB Adapter 
• MicroSD Card 16 GB 
• L298N Dual H Bridge 
• 2 Wheel Drive Robot Chassis 
• Power Bank, JETech® 10,000mAh 
• Standard Gripper Kit A 
• Servo High Torque Standard Size 

 

We choose the Raspberry Pi as the main board for our project 
because it has enough processing power to deal with image 
processing softwares, and deliver in real time the results. It also 
has the advantage of the GPIO pins, which can control the 
motors based on the result of the processing. Its compatibility 
with USB peripherals made possible the use of a common web 
camera to capture the images, and a simple Wi-Fi adapter to 
connect to a wireless network. Finally, it is a low power 
computer that can work for hours with a common battery. 

The Logitech Webcam, the Edimax Wifi adapter, and the 
MicroSD card were picked because of its cost-benefit, 
compatibility with Raspberry Pi, and ease installation and use. 
We needed to make a mobile robot, so we searched about small 
motors and chassis, and we found that a 2 Wheel Drive Robot 
Chassis, controlled with a L298N are totally compatible with 
Raspberry Pi, and has the ideal size to fit all elements on it. For 
the gripper, we found the Standard Gripper Kit A along with a 
compatible servo that has a compatible size with the chassis, 
and is also a good catcher to small objects. Finally, we choose 
a JETech power bank with 10000mAh, that is more than enough 
to power on the board with its peripherals for hours. 

The camera and the Wi-Fi adapter are directly connected on 
the USB ports of the Raspberry Pi, which is powered by the 
power bank through its microUSB port. The motors of the 
chassis are connected to the H bridge, that is responsible for 
changing the orientation of movement of the motors. 4 AA 
batteries are connected to the H bridge to power the motors. 

V. RESULTS 
  
To test our system, we have set a workspace such a way that 

the robot could realize its work properly. The environment 
consists of a square area surrounded by a line that identifies the 
boundaries of the workspace as can be seen in Fig. 8. The 
objects in cylindrical form were chosen such a way that the 
robot’s gripper can grab them easily from every position 
possible. Some parameters were corrected later to ensure that a 
180-degree turn could be realized without causing damage to 
the platform. 
 

  
Fig. 8 – Robot moving to first target detected. 

 
The deposit of the object was as expected. Fig. 9 shows a 

snapshot of the moment the object is dropped. 
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Fig. 9 – Robot leaving object in marked area. 

 
The moment following the deposit of the object was 

registered as well. Fig. 10 shows a snapshot of the moment the 
robot returns to the workspace. 
 

  
Fig. 10 – Robot returning to workspace. 

 
To verify if the image processing program was pushing the 

hardware to its limits we’ve ran a simple test. The results can 
be seen in Fig. 11; it shows us that the application wasn’t using 
even ¼ of CPU’s usage. And the usage decreases even more 
when we consider not using a graphical interface. This 
demonstrates the reason why, although of the intense repetitive 
tasks of processing a streaming image, Raspberry Pi was able 
to assure the flow of the process. That is why Raspberry Pi is 
the best choice for the project. 
 
 

 
Fig. 11 – Hardware usage by application. 

 

VI. CONCLUSION 
In the work presented we gave brief explanations about some 

of the powerful functions of OpenCV for image processing, and 
how they can be combined to basic techniques to extract the 
information we want from the workspace. By doing this project 
we could begin our journey into the image processing world, 
becoming more interested in the relationship that it has with 
robotics, electronics and programming. We faced difficulties, 
but we were able to overcome them by searching the web, 
studying the functions, and trying by our own. 
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